
K Computing - Delivering Computing Knowledge Worldwide

1
www.kcomputing.com

Linux Device Driver Development
Course Description

This course teaches attendees to develop device
drivers for a wide range of device types for Linux.

This course acquaints developers with the issues
essential for Linux device driver development. The
course progresses through a number of topics. Each
topic is presented along with a supporting labora-
tory exercise before moving on to the next topic.

Overview

This four day course provides substantial practice
with the key steps in developing Linux device driv-
ers. The course shows attendees how device drivers
work with the Linux kernel, how to compile and
load drivers, how to debug drivers, how to access
PCI hardware, how to interact with USB devices, as
well as other essential topics.

Attendees will develop a complete, simple, driver
that demonstrates the process of creating a Linux
device driver. The course covers the key issues in
Linux device drivers. Such questions as: how do I
develop a character device, how do I debug a driver,
how do I use tasklets are examined.

Attendees will spend approximately 50 percent of
the class time actually gaining hands-on experience
with these topics.

Course Objectives

• To provide an understanding of the essentials of
Linux device drivers.
• To give you practical experience in developing
Linux device drivers.
• To explain the characteristics of the Linux kernel
important to device driver writers.

Attendees will learn:

• The steps necessary to add device drivers to a
Linux system
• How to determine what hardware is present on a
Linux system
• The purpose and functionality of device drivers
• Compiling and linking device drivers
• Basics of network device drivers.

• Trade-offs between loadable modules and drivers
compiled into the kernel.

Who Should Attend:

The course is designed for software engineers who
are new to Linux and/or device drivers. Attendees
should have experience with C, be able to perform
basic UNIX commands, and have some experience
with the basic GNU tools.

Duration

Four days

Course Materials

The workshop materials include a comprehensive
student workbook. The workbook contains all of
the slides used in the course as well as hands-on lab
exercises. Students are able to bring home the lab
and example code used in the class.

Course Workshop and Set-up:

The workshop makes use of standard PC’s with a
desktop Linux distribution for development. The
course will make use of PC’s and PC devices as
examples.

Company Overview

K Computing has been providing professional
Unix/Linux developer training since 1992. K Com-
puting regularly serves corporate partners such as
Hewlett-Packard, Cisco, and Intel, and others
through course development, course delivery, and
contract instruction services.

K Computing is a leader in advanced Linux train-
ing. K Computing’s Dr. Kevin Dankwardt: serve/
served as a consulting editor to Embedded Linux
Journal, a consulting editor to LinuxDevices.com,
Chair of the Embedded Linux Consortium Educa-
tion Committee, member of the Embedded Linux
Consortium embedded Linux standards working
group, invited speaker at the Embedded Systems
Conferences in San Francisco (speaking on embed-
ded Linux), Technical Chair of several Embedded
Linux Expos & Conferences in the US and Europe,
and writes frequently about Linux.

K Computing - Delivering Computing Knowledge Worldwide

2
www.kcomputing.com

Device Driver Development Outline
1. How To Configure And Install The

Kernel
1.1. The kernel source code
1.2. Configure and build a new kernel
1.3. Install the new kernel

2. How Loadable Modules Work
2.1. Benefits of loadable modules
2.2. Correct use of insmod, modprobe,

rmmod, and lsmod
2.3. Passing parameters to a module
2.4. The GPL and Linux

3. Compiling
3.1. Identifying important header files
3.2. Writing a simple module
3.3. Compiling modules
3.4. Loading/unloading modules
3.5. Exporting symbols from a loadable

module
3.6. Creating stacked loadable modules

4. Tracing and Debugging
4.1. printk for debugging
4.2. Information in /proc and /sys
4.3. strace to track system calls
4.4. ksyms
4.5. Debuggers, e.g., gdb, and kgdb

5. Character Devices
5.1. Classes of device files
5.2. Major and minor numbers
5.3. Creating device files with mknod
5.4. Registering character device file
5.5. Listing character device driver meth-

ods
5.6. Dynamic major/minor numbers

6. Data: User To/From Kernel
6.1. Functions for accessing user space
6.2. Shared Memory
6.3. Issues with accessing user space from

kernel space

7. IOCTL, mmap() and fasync()
7.1. What is ioctl
7.2. Using ioctl commands Implement-

ing IOCTL in drivers
7.3. Implementing mmap() in a driver
7.4. Implementing fasync() in a driver

8. Blocking and Wait Queues
8.1. Schedule()
8.2. Wait Queues
8.3. Poll()

9. Memory management
9.1. Memory allocation with kmalloc and

kfree
9.2. Page-oriented memory allocation

10. I/O ports and interrupts
10.1. Uses of I/O ports and IRQs
10.2. Platform dependency issues
10.3. Reading and writing I/O ports
10.4. Interrupt Handler functions
10.5. Restrictions on kernel code running

in an interrupt context

11. Time Mgmt. And Tasklets
11.1. Timer interrupts
11.2. Delay execution techniques
11.3. Tasklets and workqueues
11.4. Obtaining the current time

12. Synchronization
12.1. Race conditions
12.2. Atomic access
12.3. Spinlocks
12.4. The Kernel Lock
12.5. Disabling interrupts

13. Accessing PCI hardware
13.1. Code to detect PCI devices
13.2. Resource conflicts
13.3. Vendor/device IDs
13.4. I/O mapping
13.5. DMA

14. Network Drivers
14.1. The net_device structure
14.2. Naming scheme
14.3. Network driver methods

15. Block Device Drivers
15.1. Block device drivers
15.2. Header files
15.3. Registering block drivers

16. USB and Udev
16.1. Dynamic creation of device files
16.2. Dynamic loading of USB drivers

