
K Computing - Delivering Computing Knowledge Worldwide

1
www.kcomputing.com

Embedded/Real-Time Linux Dev.
Course Description

Linux has become increasingly popular as
an embedded operating system. Such char-
acteristics such as its reliability, robust-
ness, open source, license-free nature, and
successful implementation on a wide
range of hardware, are some of the key
reasons.

Overview

This four and one-half day course provides
substantial practice with the key steps in
developing an embedded Linux product.
The course shows attendees how to con-
figure a small Linux kernel, develop code
within the kernel, such as for new system
functionality or device drivers, and how to
measure and obtain real-time performance
with Linux.

The course begins with a complete, sim-
ple, project that walks the attendees
through the entire process of creating a
special version of the Linux kernel, creat-
ing a root file system, including just the
libraries that are needed, and constructing
a custom boot sequence.

Attendees will spend approximately 50
percent of the class time actually gaining
hands-on experience with these topics.

Course Objectives

• To provide an understanding of the
essentials of embedded and real-time
Linux.
• To give you practical experience in
developing an embedded Linux system.

Attendees will learn:

• Key concepts and software for embedded
Linux.
• Key concepts and software for real-time
Linux.
• How to configure a Linux kernel.

• How to measure real-time performance
in Linux.
• Fundamentals of embedded software for
Linux

Who Should Attend:

The course is designed for real-time or
embedded engineers who are new to real-
time or embedded Linux. Attendees
should have experience with C and be able
to perform basic Unix commands.

Duration

Four and one-half days

Course Materials

The workshop materials include a compre-
hensive student workbook and CD. The
workbook contains all of the slides used in
the course as well as hands-on lab exer-
cises.

The CD contains the lab exercise code as
well as a large amount of embedded and
real-time Linux software.

This course may optionally be taught with
the use of a representative embedded
Linux device.

Course Workshop:

The workshop makes use of standard PC’s
with a desktop Linux distribution for
development. The PC will be used as an
example target for both real-time and
embedded. Alternative platforms such as
those with MIPS or PPC CPUs will be
used as examples. Since Linux has been
effectively ported to many architectures,
the principles taught in the workshop are
appropriate for a wide range of target plat-
forms.

K Computing - Delivering Computing Knowledge Worldwide

2
www.kcomputing.com

Embedded and Real-Time Linux
Development Outline

1. Embedded Linux Development
1.1. Objectives and format
1.2. What/Why/How/Who/Where of

embedded Linux

2. Overview Of Project
2.1. Building an mp3 playing, web browser

controlled, appliance
2.2. Configuring a Linux kernel

3. Building A Root File System
3.1. What directories are required?
3.2. Making busybox
3.3. Configuring the boot sequence
3.4. Configuring networking

4. Building A System Image
4.1. Device drivers
4.2. Inserting drivers
4.3. Stacked drivers
4.4. Libraries

5. Applications
5.1. running an embedded web server
5.2. mp3 software

6. Making A Boot Image
6.1. Syslinux
6.2. Putting the pieces together
6.3. Creating A Filesystem image
6.4. Bootloaders
6.5. U-Boot
6.6. GRUB, Syslinux

7. File Systems
7.1. Flash Devices
7.2. Read-Only File Systems
7.3. CRAMFS
7.4. Journaling File Systems
7.5. Benchmarking File Systems

8. Programming with Gnu tools
8.1. gcc
8.2. optimization
8.3. linker
8.4. debugging with gdb

9. Cross development
9.1. Cross compilation
9.2. Libraries and tool chains
9.3. How to configure the kernel for cross-

compiling
9.4. Building the kernel and modules

10. Tools
10.1. Integrated Development Environ-

ments
10.2. Tracing
10.3. Finding Memory Errors
10.4. Profiling

11. Kernel And System Programming
11.1. Writing a system call
11.2. System call basics
11.3. Shared memory
11.4. Threads
11.5. Synchronization, Scheduling
11.6. Memory locking

12. Linux and Real Time
12.1. What is real time?
12.2. a real-time time line
12.3. user space vs. kernel space
12.4. issues
12.5. latencies
12.6. low latency patch
12.7. linear scheduling
12.8. Non-preemptive kernels
12.9. latency test tool

13. Real-Time Subkernels
13.1. RTLinux overview
13.2. Building RTLinux
13.3. Installing RTLinux
13.4. Programming with RTLinux
13.5. RTAI characteristics
13.6. Building RTAI
13.7. Installing RTAI
13.8. Programming with RTAI

14. Preemption
14.1. Preemptibility
14.2. Low Latency
14.3. Preemptible Kernels
14.4. Comparing Preemptible Solutions
14.5. Other Preemptibility Features

15. Benchmarking
15.1. Performance overview
15.2. System loads
15.3. Benchmark capabilities

